M1.

Alternative method 1

$63-24.5$ or 38.5
their $38.5 \div$ their 3.5

Alternative method 2

$24.5 \div 7$ or $3.5(0)$
$63 \div$ their 3.5 or 18
their 18-7

11

Alternative method 3
$63 \div 24.5$ or $\frac{18}{7}$
$7 \times$ their $\frac{18}{7}$ or 18
their 18-7

11

M2.

Alternative method 1

$$
5 \times 24.2 \text { or } 121 \text { (miles) }
$$

their $121 \div 32.3$
or
[3.74, 3.75] (gallons)
their $[3.74,3.75] \times 4.5$
or
[16.8, 16.9] (litres)
their $[16.8,16.9] \times 1.27$
[21.33, 21.47] and bus
Alternative method 2
5×24.2 or 121 (miles)
their $121 \div 32.3$
or
[3.74, 3.75] (gallons)
1.27×4.5
or 5.71 (5) or 5.72
their $[3.74,3.75] \times$ their $5.71(5)$

Alternative method 3

$$
19.50 \div 5 \text { or } 3.9(0)
$$

$24.2 \div 32.3$
or
[0.74, 0.75] (gallons)
their $[0.74,0.75] \times 4.5$
or
[3.3, 3.4] (litres)
[4.19, 4.32] and 3.9(0) and bus
Accept 4 and 3.9(0) and bus if working shown

Alternative method 4

$$
19.50 \div 5 \text { or } 3.9(0)
$$

$24.2 \div 32.3$
or
[0.74, 0.75] (gallons)
1.27×4.5
or 5.71 (5) or 5.72
£ per gallon
their $[0.74,0.75] \times$ their $5.71(5)$
[4.19, 4.32] and 3.9(0) and bus
Accept 4 and 3.9(0) and bus if working shown

M3.
$10000 \div 400=25$
or
$400 \times 25=10000$
or
$10000 \div 25=400$

Ticks 'No, the time will be longer' and gives correct explanation
oe
eg He won't be able to run 10 km at same speed/rate/pace as he runs 400 m

M4.
(a) $(10,20.8),(20,21.6),(30,22.4)$ and $(40,23.2)$ plotted

Straight line through their points
ft line of best fit following plotting error
(b) $[19.9,20.1]$
(c) Alternative method 1 21.2 or 22.8
1.6

> ft their graph

Alternative method 2
$(20.8+21.6) \div 2$ or 21.2
or
$(22.4+23.2) \div 2$ or 22.8
1.6

Alternative method 3
23.2-21.6
or
22.4-20.8
or
21.6-20
or
$(22.4-21.6) \times 2$
or
$(23.2-22.4) \times 2$
Finds the difference for any two masses 20 kg apart or
Doubles the difference for any two masses 10 kg apart
1.6

M5.

Alternative method 1

$90 \div 40$ or 2.25
or $356 \div 40$ or 8.9
oe

801

Alternative method 2

$40+40+10$
and $356 \div 4$ or 89
Clear build up method

801

M6.
Alternative method 1 Price of 40 batteries using packs
$40 \div 4$ or 10 (packs used in offer A)
and
$40 \div 5$ or 8 (packs used in offer B)
oe
8 is implied by the use of 6 packs in offer B
their 10×2.52 or $25.2(0)$
or their $2.52 \div 3 \times 2$ or 1.68
or their 8×2.75 or 22
or $\frac{3}{4} \times 40 \div 5$ or $30 \div 5$ or 6
oe
their $25.2(0) \div 3 \times 2$
or $10 \times$ their 1.68 or $16.8(0)$
or $\frac{3}{4} \times$ their 22
or their 6×2.75 or $16.5(0)$
oe
16.8(0) and 16.5(0)
oe
(Offer) B
Strand (iii)
ft for correct decision based on their values, with one correct value and first two method marks

Q1ft

Additional Guidance

Allow any correct working in pence up to M3

Allow consistent working in pence for M3 and A1Q1ft $16.8(0)$ or $16.5(0)$ or 6×2.75 is minimum M0M1M1

Alternative method 2 Price of 40 batteries using unit price $2.52 \div 4$ or 0.63 and
$2.75 \div 5$ or 0.55
oe
M1
$40 \times$ their 0.63 or $25.2(0)$
or $40 \times$ their 0.55 or 22
oe
their $25.2 \div 3 \times 2$ or $16.8(0)$
or $\frac{3}{4} \times 40 \times$ their 0.55
or $30 \times$ their 0.55
or $\frac{3}{4} \times$ their 22 or $16.5(0)$
oe
16.8(0) and 16.5(0)
oe
(Offer) B
Strand (iii)
ft for correct decision based on their values, with one correct value and first two method marks

Q1ft

Additional Guidance
Allow any correct working in pence up to M3
Allow consistent working in pence for M3 and A1Q1ft
$16.8(0)$ or $16.5(0)$ is minimum M0M1M1
Alternative method 3 Price per battery
$252 \div 4$ or 63
and
$275 \div 5$ or 55
oe
their $63 \div 3 \times 2$ or 42
oe
$\frac{3}{4} \times$ their 55 or $41(.25)$
oe
M1
42 and 41 (.25)
oe
(Offer) B
Strand (iii)
ft for correct decision based on their values, with one correct value and first two method marks

Q1ft

Additional Guidance

Allow any correct working in pounds up to M3
Allow consistent working in pounds for M3 and A1Q1ft
42 or $41(.25)$ is minimum M0M1M1

M7.
Alternative method 1
$\frac{1500}{600}$ or 2.5
or $\frac{600}{1500}$ or 0.4
oe
3.3×2.5 or 8.25

$$
\begin{aligned}
& 9.6 \div 2.5 \text { or } 3.84 \\
& \frac{15}{100} \times 9.6 \text { or } 1.44 \\
& \text { or } 0.85 \text { seen }
\end{aligned}
$$

$\frac{15}{100} \times 9.6$ or 1.44
or 0.85 seen

$$
\begin{aligned}
& \frac{15}{100} \times 3.84 \\
& \text { or } 0.576 \\
& \text { or } 0.85 \text { seen } \\
& 9.6-\text { their } 1.44 \\
& \text { or } 0.85 \times 9.6 \\
& \text { or } 8.16
\end{aligned}
$$

9.6 - their 1.44 or 8.16
or 0.0064×0.85
$3.84-0.576$
or 0.85×3.84
their $8.16 \div 2.5$
8.25 and 8.16
3.26 or 3.264 or 3.27

1500 g pack identified
Strand(iii) correct conclusion for their values provided method marks have been awarded

Alternative method 2

$3.3 \div 600$ or 0.0055 (price per 1 g)
$3.3 \div 6$ or 0.55 (price per 100 g)
$9.6 \div 1500$ or 0.0064
$9.6 \div 15$ or 0.64
$9.6 \times \frac{15}{100}$ or 1.44
or 0.85 seen
$\frac{15}{100} \times 0.0064$ or 0.00096
or 0.85 seen

$$
\frac{15}{100} \times 0.64 \text { or } 0.096
$$

> or 0.85 seen
> $9.6-1.44$
> or 0.85×1.44
> or 8.16
their 0.0064 - their 0.00096
or 0.85×0.0064
or 0.0054(4)
their 0.64 - their 0.096
or $0.85 \times$ their 0.64
or 0.544
$8.16 \div 15$ or 0.544
0.0055 and 0.00544
0.55 and 0.544

1500 g pack identified
Strand(iii) correct conclusion for their values provided method marks have been awarded

Alternative method 3

$3.3 \div 600$ or 0.0055 (price per 1 g)
$\frac{15}{100} \times 9.6$ or 1.44
or 0.85 seen

$$
\begin{aligned}
& 9.6 \div 2.5 \text { or } 3.84 \\
& \frac{15}{100} \times 9.6 \text { or } 1.44 \\
& \text { or } 0.85 \text { seen }
\end{aligned}
$$

9.6 - their 1.44
or 0.85×9.6
or 8.16

$$
\begin{aligned}
& \frac{15}{100} \times 3.84 \\
& \text { or } 0.85 \text { seen } \\
& \text { or } 0.576
\end{aligned}
$$

> 9.6 - their 1.44
> or 0.85×9.6
> or 8.16
their $8.16 \div 1500$ or 0.00544
$3.84-0.576$
or 0.85×3.84
their $8.16 \div 2.5$
0.0055 and 0.00544
3.26 or 3.27

1500 g pack identified
Strand(iii) correct conclusion for their values provided method marks have been awarded

Q1ft

Alternative method 4

$600 \div 3.3$ or 181.8...

$$
3.30 \times 5 \text { or } 16.50
$$

$\frac{15}{100} \times 9.6$ or 1.44
or 0.85 seen

$$
\begin{aligned}
& \frac{15}{100} \times 9.6 \text { or } 1.44 \\
& \text { or } 0.85 \text { seen }
\end{aligned}
$$

9.6 - their 1.44
or 0.85×9.6
or 8.16
9.6 - their 1.44
or 0.85×9.6
or 8.16
$1500 \div$ their 8.16 or $183.8 \ldots$
\quad their 8.16×2 or 16.32
181.8... and $183.8 \ldots$
16.32 and 1650

1500 g pack identified
Strand(iii) correct conclusion for their values provided method marks have been awarded

M8.(a) 600
(b) $900-860$ or $860+40=900$ or 40
or
$0.9-0.86$ or $0.86+0.04=0.9$ or 0.04
Condone 860-900
oe
Condone incorrect or missing units

40 grams or 0.04 kg
SC1 940 g or 0.94 kg

Additional Guidance

If you see $860+40=900$ but then further work to build up to eg 1800, mark the whole method and the only mark available is the SC1.
Once 40 g or 0.04 kg seen, ignore any attempt to change units.
40 g seen in working but then 40 on ans line - condone. M1A1

M9.Any valid conversion seen, eg
$10(\mathrm{~cm})=4$ (inches)
$25(\mathrm{~cm})=10$ (inches)
$30(\mathrm{~cm})=12$ (inches)
Numbers may be marked next to graph

```
150(cm) = 60 (inches)
or
75 (inches) = [185, 190] (cm)
or
75:150 = 1:2 and inch :cm = 1:2.5
or
eg 150\div30=5 and 75\div12=6.(...)
    May use any value [60,75] (inches) correctly converted to
    cm to show it is not enough
    eg 70 inches = 175 cm
```

Correct conclusion with appropriate values stated
eg No and 60
or No and [185, 190]
or No and each inch needs 2.5 cm and there are only 2
> oe
> Strand (iii) Allow Q1ft if M1A0 awarded, an arithmetic error made in calculating conversion of 150 cm or 75 inches and a correct conclusion reached for their values. Must be using correct conversions throughout

Alternative method

Divides 150 and 75 by a common factor of at least 5
eg $150 \div 10=15$ and $75 \div 10=7.5$

Reads off accurately for one of their values eg $15 \mathrm{~cm}=6$ inches or

Draws lines across and down accurately for both values

Correct conclusion comparing their scaled value and graph value or comparing their pairs of lines

Strand (iii) Allow Q1ft if M1A0 awarded, an error made in reading value and correct conclusion reached for their values

Additional Guidance

Note that the list for Q1 are only examples, there are many other possible valid conclusions
eg1 70 inches $=175 \mathrm{~cm}$ so 150 cm is not enough
eg2 $150 \div 30=5$ and $75 \div 12=6$.(...) so No because need 6 times and only 5 . They must be using a correct conversion for all parts of their answer to qualify for the Q mark. Allow arithmetic errors only.

M10.(a) $\quad y=\mathrm{k} x$

$$
y=\mathrm{k} x^{2} \quad \text { B1 for } 2 \text { or } 3 \text { correct }
$$

$y=\frac{\mathrm{k}}{x}$
$y=\frac{\mathrm{k}}{x^{2}}$
Ignore incorrect
(b) $8=\frac{\mathrm{k}}{3}$
oe

$$
8 \times 3 \div 5
$$

oe
4.8

$$
\begin{aligned}
& \text { oe eg } \frac{24}{5} \text { or }{ }^{4 \frac{4}{5}} \\
& \text { SC1 for } \frac{40}{3}(13.3 \ldots) \text { oe } \\
& \text { SC1 for } \frac{40}{9}(4.4 \ldots) \text { oe } \\
& \text { SC1 for } \frac{72}{25}(2.88 \text { or } 2.9) \text { oe }
\end{aligned}
$$

M11.(a) $5.99 \div 8$ or $599 \div 8$
Condone $6 \div 8$ or $600 \div 8$
$74.875(\mathrm{p})$ or $74(\mathrm{p})$ or $75(\mathrm{p})$
Accept $£ 0.74$ or $£ 0.75$ or $£ 0.74875$
Allow any correct rounding or truncation giving an answer to
2 or more s.f.
(b) $3.99 \div 6$
or $399 \div 6$ oe
Scaling method used with $£ 6$
or $\frac{6}{8} \times 5.99$
eg 8 cost £ $6,4 \operatorname{cost} £ 3,2 \operatorname{cost} £ 1.506 \operatorname{cost} £ 4.50$
or $6 \times$ their 75
$£ 3.99$ + their $£ 1.50$
£5.99-their $£ 1.50$
or $6 \times$ their 0.75
(£) 0.665 or $66(.5)(p)$ or $67(p)$ 6 pack is better value
or 4.4925 or 450 p or $£ 4.50$
$7 p, 8 p$ or $9 p$ cheaper per battery
and better value (Yes)
$£ 5.49$ or $£ 4.49$
Comparison must be with consistent units ft their (a)

Alternative method

$8 \div 5.99$ or $8 \div 599$
May be seen in (a)
and $6 \div 3.99$ or $6 \div 399$
6 costs $£ 2$ less (so extras are £1 each)
Compares cost of 24 batteries
$£ 5.99 \times 3$ and $£ 3.99 \times 4$
1.3(3) and 1.5(0)
£1 compared with 75p
and 6 batteries better value (Yes)
£17.97 and £15.96
and 6 batteries better value

$$
\begin{aligned}
& \text { M12.(a) } \quad \frac{1}{2} \times(280+198) \times 86 \text { oe } \\
& \text { or } 198 \times 86+\frac{1}{2} \times(280-198) \times 86 \\
& \\
& \text { or } 280 \times 86-\frac{1}{2} \times(280-198) \times 86
\end{aligned}
$$

20554
(b) their $20554 \div 4047$ or 5.08 or $5.07 \ldots$ or 5.1

$$
4047 \div 7=578 .(14 \ldots)
$$

their 5.08×7
their $20554 \div$ their 578.(14...)
$35.5 \ldots$ or 35.56 or 35.7

35
Rounding down
Q1ft
[6]

M13. 600 and 50 and 200
B2 for any two of 600,50, 200
B1 for any one of 600,50, 200
or for sight of $\frac{2}{3}$ or $\frac{3}{2}$ oe,
or for sight of 2:3 or 3:2 oe
Accept 66\%,67\%,150\%
If no correct values seen,
B1 for any correct proportion
eg Potatoes $=3 \times$ stock
Potatoes $=12 \times$ carrots
Stock $=4 \times$ carrots

